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Abstract. The variational equation for the mean square displacement of the electron in the polaron world-
line approach to quenched QED can be cast into a form which closely resembles the classical Abraham–
Lorentz equation but without the conceptual and practical diseases of the latter. The connection with
delay equations describing field retardation effects is also established. As applications we solve this integro-
differential equation numerically for various values of the coupling constant and cut-off and re-derive the
variational approximation to the anomalous mass dimension of the electron found recently.

1 Introduction

There is a long history of attempts at classical models of
the electron until quantum electrodynamics (QED) took
over as the most successful and precise theory in the mi-
croscopic domain [1]. Noteworthy among these models is,
in particular, the one due to Abraham and Lorentz nearly
one hundred years ago which is covered in many textbooks
(see, for example, [2]). It describes a classical electron un-
der the influence of both an external force as well as the
back reaction from the energy loss due to radiation of
photons, and leads to a third-order differential equation
which, however, has extraneous unphysical run-away so-
lutions. The usual method to avoid these solutions is to
convert the original equation into a second-order integro-
differential equation. The classic non-relativistic result is
of the well-known form [2]

d2

dt2
x(t) =

1
m

∫ ∞

0
ds e−s F(t + sτ) , (1)

where τ is the characteristic time 2e2/3mc3, m is the elec-
tron mass and F is an external force which can depend
on time either explicitly or implicitly through x(t). The
solutions to this equation do not exhibit run-away behav-
ior, however (1) clearly violates (non-relativistic) causality
because the motion at time t depends on forces at time
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t′ > t. It is noteworthy that the analogous equation, with-
out runaway solutions, for a relativistic Dirac particle [3]
in 3 dimensions has only been derived rather recently [4].

From a modern perspective, of course, it is appropriate
to wonder how non-relativistic and classical equations like
the one above are connected to a quantum mechanical and
ultimately a quantum field-theoretical description. In non-
relativistic QED this correspondence limit has been exam-
ined in particular by Moniz and Sharp [5] while Johnson
and Hu have derived an Abraham–Lorentz–Dirac equa-
tion as a semi-classical limit within scalar quantum field
theory [6].

In the present paper we discuss the fully relativistic
field-theoretic problem of a spin-1/2 electron dressed by an
arbitrary number of photons in the quenched approxima-
tion to QED. Our approach is patterned after Feynman’s
celebrated variational treatment of the polaron problem
[7], which was first applied by Mano [8] to a relativis-
tic scalar field theory and re-discovered and expanded
by us in a series of papers [9,10]. Its main features are
the description of relativistic particles by worldlines [11]
parametrized by the proper time, an exact functional in-
tegration over the light fields (i.e. photons) and a varia-
tional approximation of the resulting effective action by
a retarded quadratic trial action. In recent work we have
extended this approach to more realistic theories, in par-
ticular to quenched QED [12,13].

The approach is fully non-perturbative, Lorentz covari-
ant, respects gauge symmetry and contains the exact one-
loop self-energy in the small coupling limit. It does not rely
on a perturbative, semi-classical or a derivative expansion.
In [13] we concentrated on the divergence structure and
renormalization of the theory, resulting in a compact ex-



162 R. Rosenfelder, A.W. Schreiber: Variational Abraham–Lorentz equation

pression for the anomalous mass dimension of the electron.
In the present work we go beyond this and calculate also
the finite contributions. We do this by numerically solv-
ing the variational equation for the position of the pole
of the electron propagator for a range of coupling con-
stants and UV cut-offs. We shall also show that the rele-
vant variational equation can be written as an Abraham–
Lorentz-like equation for the mean square displacement of
the electron. As this “variational Abraham–Lorentz equa-
tion” (VALE) turns out to be (at most) a second-order
integro-differential equation, no run-away solutions occur.
Indeed, anticipating the result derived in Sect. 3, in gen-
eral this equation may be written in the suggestive form

d2

dt2
〈
x2(t)

〉
= 2

〈
ẋ2(t)

〉
+

2
κE

∫ +∞

−∞
ds f(s)

{〈
[∆x(t)]2

〉
−
〈
[∆x(t−s)]2

〉}
. (2)

Here xµ(t) is the Euclidean position at proper time t
(t > 0), ∆xµ(t) is its deviation from a classical straight-
line path, κE is a reparameterization parameter playing
the role of a mass and 〈. . .〉 refers to a certain averaging
over all worldlines occurring in the functional integral for
the theory. These definitions will be made more precise in
the following two sections. At this stage we merely point
out the marked similarity of this equation to (1), in par-
ticular if one re-writes the latter as

d2

dt2
x2(t) = 2 ẋ2(t) +

2
m

x(t) ·
∫ ∞

0
ds e−sF(t + sτ) . (3)

Of course, (2) and (3) are not completely identical, nor
should they be. In the absence of external forces the lat-
ter equation yields a differential equation with the solution
that the particle moves uniformly along a straight line. On
the other hand, there are no external forces in (2). The
first term on the RHS is the classical term while the inte-
gral characterizes an “internal force” which has its origin
in the constant emission and re-absorption of virtual pho-
tons. This term is sensitive only to the (random-walk-like)
deviations from a straight line.

In the next section we will describe the derivation
of the variational equations, leading to the VALE (2) in
Sect. 3 and will solve it numerically in Sect. 4. Understand-
ing these numerical results will also give a new derivation
of the variational approximation to the anomalous mass
dimension, simpler than the one presented in [13]. Approx-
imate forms of the VALE are discussed in an appendix.

2 The variational method

In order to introduce our notation and terminology, we
begin with a brief summary of the essential points of the
variational technique applied to quenched QED and refer
the reader to [9,12] and in particular [13] for the details.

2.1 Worldline formulation

The starting point is the worldline, rather than field-
theoretic, description for the propagator of a spinning
particle which involves functional integrals over a bosonic
worldline xµ(t) as well as a Grassmannian ζµ(t) which
characterizes the spin. In Minkowski space time (with met-
ric (+, − − −)) the free part (modulo boundary terms)
reads

S0 =
∫ T

0
dt

[
−κ0

2
ẋ2 + i ζ · ζ̇ +

1
T

ẋ · ζχ

]
, (4)

where κ0 is the reparametrization parameter and χ the
supersymmetric (SUSY) counterpart to the proper time
T . The dependence of the action on these two degrees of
freedom is connected by a supersymmetric transformation
[12]. Due to time-translational invariance only the time in-
terval T matters and therefore in reality the integration
limits in (4) and all following expressions are [t0, T + t0]
with t0 arbitrary (e.g. 0 or −T/2). The Gaussian func-
tional integral over the photon field in the interaction part
can be carried out analytically, resulting in a bi-local ef-
fective action

S1 = −e2

2

∫ T

0
dt1dt2

∫
d4k

(2π)4
Gµν(k) Jµ(k, x1, ζ1)

× Jν(−k, x2, ζ2) e−ik·(x1−x2), (5)

where Gµν(k) is the photon propagator in an arbitrary
(covariant) gauge,

Jµ(k, x, ζ) = ẋµ − 2
κ0

ζµ k · ζ (6)

is the (convection and spin) current of the electron and
x1 ≡ x(t1) etc. There is an elegant, compact and mani-
festly supersymmetric formulation in terms of “superposi-
tions” and “superderivatives” [12] but in the following we
will use the more cumbersome but explicit decomposition
into bosonic and fermionic worldlines.

2.2 Feynman–Jensen stationarity
and variational principle

Having integrated out the photons, the functional inte-
grals over x and ζ cannot be performed exactly but may be
approximated via the introduction of a trial action St[x, ζ]
and by making use of Feynman’s variational technique:∫

eiS =
∫

eiSt ·
∫

eiS∫
eiSt

=
∫

eiSt ·
∫

ei(S−St) eiSt∫
eiSt

≡
∫

eiSt ·
〈
ei(S−St)

〉
St

�
∫

eiSt · ei〈S−St〉St . (7)

Even with Euclidean times, where exp(iS) → exp(−SE) ,
the usual Jensen inequality does not hold anymore since
we are also integrating over Grassmann-valued trajecto-
ries. However, only stationarity of the above expression
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under variations of the trial action is required in the fol-
lowing. The subscript St on the average reminds us that
the weight function is eiSt ; the averages in (2) are to be un-
derstood in the same way. With an arbitrary trial action
the above approximation becomes exact at the station-
ary point. In practise, however, only trial actions at most
quadratic in x and ζ can be used. We work with a trial
action of this form obtained by making the modified free
action S̃0 = S0 + p · x bi-local1

S̃t = λ1 p · x +
∫ T

0
dt1 dt2

[
−κ0

2
gB(σ) ẋ1 · ẋ2

+ i g′
F (σ) ζ1 · ζ2 − 1

T
σ g′

M (σ) ẋ1 · ζ2χ

]
. (8)

In addition to a scalar variational parameter λ1 this trial
action contains three arbitrary (but even) variational “re-
tardation” functions of σ = t1 − t2 multiplying the three
quadratic combinations ẋ ẋ (i.e. “bosonic”, or B), ζ ζ
(“fermionic”, F ) and ẋ ζ (“mixed”, M). Only the first two
of these are relevant in the calculation of the pole position
of the electron propagator, which is obtained for T → ∞.
An explicitly supersymmetric trial action would require
only one retardation function,

gB(σ) = gF (σ) = gM (σ) ≡ g(σ) . (9)

As the exact action contains SUSY-breaking boundary
terms (which will be discussed in more detail elsewhere
[14]) we shall not enforce (9). It is therefore advisable to
take the most general ansatz and let the variational prin-
ciple choose the optimal solution within the given class
of test functions2. Note that for λ1 = 1, gB(σ) = gF (σ) =
gM (σ) = δ(σ) the trial action (8) reduces to the free action
(4). Because averaging with the free action is equivalent to
first-order perturbation theory this implies that the vari-
ational approach gives the correct one-loop self-energy for
small coupling.

2.3 Mano’s equation

The averages involved in the last term of (7) may be
separated into averages of S0 − St (which, together with∫

exp(iSt), may be combined into a quantity Ω) and the
average of S1 (denoted by V ). The roles of Ω and V are
not unlike those of, respectively, kinetic and potential con-
tributions in a standard quantum mechanical variational

1 The integration over the endpoint x(T ) = x of the trajec-
tory with weight exp(ip ·x) (where p is the external momentum
of the particle) is included in the average. Note that the present
retardation functions have a different normalization from the
one in [10].

2 It should be noted that (8) is still not the most general
quadratic ansatz as the retardation functions are assumed
to depend only on the proper time difference and additional
Lorentz structures are absent. For the general case in a scalar
theory see [10], Appendix C.

calculation. Near the pole the electron propagator takes
the form

G2(p) −→ Z2
p/ + M

p2 − M2 , (10)

and the on-shell limit of the argument of the exponential
of the last term in (7) directly yields the relationship be-
tween the electron’s bare mass M0 and its physical mass
M . Explicitly, this equation, termed “Mano’s equation”,
becomes

M2
0 = M2(2λ−λ2)−2(Ω[AB ]−Ω[AF ]+V [µ2

B , µ2
F ]). (11)

Here the “profile functions” AB and AF are Fourier trans-
forms of the bosonic and fermionic variational retardation
functions, respectively:

Ai(E) =
∫ +∞

−∞
dσ gi(σ)eiEσ

= 2
∫ ∞

0
dσ gi(σ) cos (Eσ) , i = B, F . (12)

They are fixed, as is λ ≡ λ1/AB(0), through the Feynman–
Jensen variational principle which guarantees that Mano’s
equation (11) is stationary with respect to their variation.
Once fixed, all quantities of interest in the field theory (e.g.
masses, form factors, scattering cross sections [9]) may
be expressed in terms of these. AB and AF only appear
implicitly in the potential V , through the bosonic and
fermionic “pseudotimes” µ2

B,F (σ) defined by

µ2
i (σ) =

4
π

∫ ∞

0
dE

1
E2Ai(E)

sin2
(

Eσ

2

)
. (13)

2.4 Kinetic and potential terms

Explicitly, the kinetic terms Ω[Ai] are given, in 4-dimen-
sional Euclidean space, by

Ω[Ai] =
2κE

π

∫ ∞

0
dE

(
log Ai(E) +

1
Ai(E)

− 1
)

. (14)

Here κE > 0 is a parameter which re-parameterizes the
proper time without changing the physics. It is useful to
keep it because it plays the role of a mass in the worldline
description (see footnote 3 in [10]; the Euclidean parame-
ter κE is related to its Minkowski counterpart κ0 through
κ0 = iκE).

The potential term V results from averaging the bi-
local effective action (5) and performing the limit T → ∞.
While details of this calculations are rather involved and
will be given elsewhere [14] the final result was already
presented in [13]. As V is ultraviolet (UV) divergent we
write it down in d = 4− 2ε dimensions. In Euclidean time
with p2

E = −M2, it takes the form

V = V1 + V2, (15)

V1 = −πα

κE
ν2ε (d − 1)

∫ ∞

0
dσ

∫
ddk

(2π)d

k2

k2 + m2

×
[ (

µ̇2
F (σ)

)2 − (µ̇2
B(σ)

)2 ]
E(σ, k), (16)
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V2 =
4πα

κE
ν2ε λ2

∫ ∞

0
dσ

∫
ddk

(2π)d

1
k2 + m2

×
[

M2 − (d − 2)
(k · pE)2

k2

]
E(σ, k) . (17)

Here ν is an arbitrary mass parameter, the abbreviation

E(k, σ) = exp
{

− 1
2κE

[
k2µ2

B(σ) − 2λk · pE σ
]}

(18)

has been used and a photon mass m has been kept in the
photon propagator. The separation of V into two parts
makes sense because of several facts: first, it is seen that V2
is more singular than V1, having an additional power k2 in
the integrand. Second, V2 vanishes for massless electrons
M = 0, is repulsive (V2 > 0) and only depends on the
bosonic pseudotime.

Previously the anomalous mass dimension γM was cal-
culated analytically in dimensional regularization [13].
However, from a numerical point of view this regulariza-
tion is extremely cumbersome in non-perturbative calcu-
lations (see, for example, the Dyson–Schwinger equation
studies in [15]) and is usually replaced by a simple momen-
tum cut-off. Proper time regularization, i.e. a lower cut-off
of proper time integrals at σ = 1/Λ2, Λ → ∞ could also
be used (it would maintain translational invariance), but
it violates reparametrization invariance.

In the present work, it is much more convenient to
make use of a form factor which is very similar to the
non-local regularization method proposed in [16]. Here the
main reason is that the UV-divergence in V originates
in an undamped (for σ → 0, in which case µ2

i (σ) → σ)
Euclidean momentum integral over the exponential factor
E(k, σ). This is the only appearance of µ2

B in V and hence,
after introducing a form factor of the form

F (k2) = exp
(

− k2

2Λ2

)
, (19)

all dimensionally regulated expressions in [13] may be con-
verted to form factor regulated ones by setting d = 4 and
making the simple replacement

µ2
B(σ) −→ µ̃2

B(σ) = µ2
B(σ) +

κE

Λ2 . (20)

With this regularization understood, the different terms
in the potential V of (15)–(17) become (after performing
the momentum integration for m = 0)

V1 = −3α

4π
κE

∫ ∞

0
dσ

(µ̇2
F (σ))2 − (µ̇2

B(σ))2

µ̃4
B(σ)

e−γ̃(σ),

(21)

V2 =
3α

π
κE

∫ ∞

0

dσ

σ2

1 − [1 + γ̃(σ)] e−γ̃(σ)

γ̃(σ)
. (22)

Here

γ̃(σ) =
λ2M2σ2

2κE µ̃2
B(σ)

, µ̇2(σ) ≡ dµ2(σ)
dσ

(23)

and α = e2/(4π) (in the real world � 1/137) is the fine
structure constant.

It is clear from (21) and (22) that the σ → 0 UV-
divergences due to inverse powers of the bosonic pseudo-
time are now regulated and that both V1 and V2 as well
as Ωi do not depend on the reparametrization parameter
κE, which only sets the scale for the σ- and E-variables3.
One also sees that bosonic and fermionic degrees of free-
dom do not enter symmetrically in the interaction (e.g. V2
only depends on µ̃2

B) and therefore the pseudotimes are in
general different. This is due to supersymmetry violation
by boundary terms in the trial action and could affect the
spin structure of the propagator in our variational scheme.
Since the spin-dependent terms are subleading in the limit
T → ∞ and are not considered in the present investiga-
tion we just let the variational principle decide how much
of SUSY violations it tolerates with the present trial ac-
tion. Fortunately, as we will observe numerically and is to
be expected from boundary terms, these supersymmetry
violations are restricted to large values of σ (or small val-
ues of E) and therefore do not have any influence on the
UV behavior of the solutions.

Because the fermionic contributions, both in the ki-
netic term of Mano’s equation (11) as well as in V1 (see
(21)), appear with a sign opposite to the one of the bosonic
contributions they would cancel them for exact supersym-
metry, i.e. µ2

F (σ) = µ2
B(σ). Note that for σ → 0 a cancel-

lation of this sort is absolutely necessary as otherwise one
would encounter the same quadratic divergences which oc-
cur in the propagator of scalar QED. In the context of the
variational calculation the cancellation occurs only after
variation because one needs a restoring force in the vari-
ational principle. A simple example illustrating this sub-
tlety is given in [17].

2.5 Variational equations

With the explicit expressions for Ω and V above it is now
a simple, albeit somewhat tedious, exercise to derive the
variational equations for λ, AF and AB . One obtains, re-
spectively,

λ = 1 − 3α

2π
κE

λM2

∫ ∞

0
dσ

[
(µ̇2

F )2 − (µ̇2
B)2

µ̃4
B

γ̃ e−γ̃

+
4
σ2

(1 + γ̃ + γ̃2)e−γ̃ − 1
γ̃

]
, (24)

1 − 1
Ai(E)

=
2
κE

∫ ∞

0
dσ (−)i δV

δµ2
i (σ)

sin2(Eσ/2)
E2Ai(E)

, (25)

where we define (−)B = 1 and (−)F = −1 , the difference
in sign originating from the opposite sign of Ω[AB ] and
Ω[AF ] in Mano’s equation.

The functional derivatives in (25) are

δV

δµ2
F (σ)

=
3α

2π
κE

d
dσ

[
µ̇2

F (σ)
µ̃4

B(σ)
e−γ̃(σ)

]
(26)

3 This is due to the reparametrization dependence of
Ai(E, κE) = Ai(κEE) and µ2

i (σ, κE) = κE µ2
i (σ/κE) .
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and
δV

δµ2
B(σ)

= − 3α

2π
κE

d
dσ

[
µ̇2

B(σ)
µ̃4

B(σ)
e−γ̃(σ)

]

+
3α

4π
κE

1
µ̃2

B

[
(µ̇2

F )2 − (µ̇2
B)2

µ̃4
B

(2 − γ̃)e−γ̃

− 4
σ2

(1 + γ̃ + γ̃2) e−γ̃ − 1
γ̃

]
. (27)

In the limit in which the interactions are turned off, we
have Ai(E) = λ = 1 and therefore µ2

i (σ) = σ, Ωi =
0, M = M0. In the interacting theory the pseudotimes
µ2

i (σ) still have linear behavior for both σ → 0, ∞. From
(26) and (27) we then see that without regularization

δV1

δµ2
i (σ)

−→ const.
σ3 ,

δV2

δµ2
B(σ)

−→ const.
σ2 , (28)

for σ → 0. It is this more singular UV-behavior of δV1
which requires regularization also in the variational equa-
tions. This is the trademark of a renormalizable theory
whereas the more benign behavior of δV2 is characteris-
tic for a super-renormalizable theory. On the other hand
in the infrared region V2 dominates because the very last
term in (27) is not exponentially suppressed

δV2

δµ2
B(σ)

σ→∞−→ const
σ4 . (29)

This is due to taking a vanishing photon mass m = 0 in
(17).

3 The variational
Abraham–Lorentz-like equations

It is obvious that the profile functions Ai and the pseu-
dotimes µ2

i contain the same information, as seen in (13).
It would be more efficient, therefore, to eliminate one of
these from the variational equations (25). We shall now
show that it is possible to rewrite (25) entirely in terms of
the pseudotimes.

A differentiation of (13) with respect to σ yields

µ̇2
i (σ) =

d
dσ

|σ|+ 2
π

∫ ∞

0
dE

sin(Eσ)
E

(
1

Ai(E)
− 1
)

. (30)

It is important here to realize that the pseudotime is even
(as can be seen from (13)) and that the first term on
the RHS therefore gives sgn (σ). The remaining integral
is convergent due to subtraction of the asymptotic value
1/Ai(∞) = 1. Another differentiation leads to

µ̈2
i (σ) = 2 δ(σ)+

2
π

∫ ∞

0
dE cos(Eσ)

(
1

Ai(E)
− 1
)

. (31)

If we now insert (25) we obtain

µ̈2
i (σ) = 2 δ(σ) − 2

π
1
κE

∫ ∞

0
dE

∫ ∞

0
dσ′ (−)i δV

δµ2
i (σ′)

× 1
E2Ai(E)

[ 1 − cos(Eσ′) ] cos(Eσ) . (32)

By using the addition theorem for the cosine function and
the definition (13) the E-integration can be performed ex-
actly and gives

µ̈2
i (σ) − 1

κE

∫ ∞

0
dσ′ (−)i δV

δµ2
i (σ′)

×
[
µ2

i (σ) − 1
2
µ2

i (σ + σ′) − 1
2
µ2

i (|σ − σ′|)
]

= 2 δ(σ) , σ ≥ 0 . (33)

The appropriate boundary conditions for solutions to this
integro-differential equation are

µ2
i (0) = 0 , lim

σ→+0
µ̇2

i (σ) = 1 . (34)

The proper times σ, σ′ are restricted to be non-negative
and we therefore have to take the absolute value in the
argument of the shifted pseudotime in (33). Alternatively,
this restriction may be avoided by remembering that µ2

i (σ)
is an even function of σ and hence the integrands appear-
ing in the expression for V (see (21) and (22)) are also.
One obtains

µ̈2
i (σ) − 1

2κE

∫ +∞

−∞
dσ′ (−)i δV

δµ2
i (σ′)

[µ2
i (σ) − µ2

i (σ − σ′)]

= 2 δ(σ) , −∞ ≤ σ ≤ +∞ (35)

and, in fact, even the δ-function may be eliminated by per-
forming differentiation with respect to |σ| rather than σ:

µ2 ′′
i (|σ|) − 1

2κE

∫ +∞

−∞
dσ′ (−)i δV

δµ2
i (|σ′|)

× [ µ2
i (|σ|) − µ2

i (|σ − σ′|) ] = 0 ,

−∞ ≤ σ ≤ +∞ . (36)

Here ′′ denotes differentiation with respect to the argu-
ment.

We shall present numerical solutions to these varia-
tional equations (which, as promised, no longer involve
the profile functions directly) in the next section. At this
stage, however, we would first like to discuss the mean-
ing of (36) for the bosonic case, i.e. i = B. In [10], (25)
and (26), the expectation value of xµ(t1) − xµ(t2) and
[xµ(t1) − xµ(t2)]

2, when averaged with the trial action,
were calculated. The corresponding results for the present
case (i.e. QED, with Euclidean metric, and setting t2 = 0
and hence xµ(t2) = 0 for convenience) become

〈|x(t)|〉St
=

λ M

κE
t ≡ |xclass.(t)| ,

〈
x2(t)

〉
St

= 〈|x(t)|〉2St
+

4
κE

µ2(t)

≡ x2
class.(t) +

〈
[∆x(t)]2

〉
St

, (37)

i.e. the mean squared displacement of the electron is made
up by an overall quadratic drift due to the electron’s mo-
mentum, i.e. growing like t2, and a term proportional to
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the pseudotime, growing like t for small t; the latter char-
acterizes both the quantum mechanical Brownian motion
as well as the continual random “kicks” from emission and
absorption of virtual photons in the cloud surrounding the
bare particle.

Inserting (37) into the variational equation (36) results
in the Abraham–Lorentz-like equation mentioned in the
Introduction, i.e.

d2

d|t|2
〈
x2(t)

〉
St

= 2
〈
ẋ2(t)

〉
St

+
2
κE

∫ ∞

−∞
dt′

1
4

δV

δµ2
i (t′)

×
{〈

[∆x(t)]2
〉

St

−
〈
[∆x(t − t′)]2

〉
St

}
. (38)

δV/δµ2
i may then be interpreted as an (internal) “force”

acting on the bare electron.
As mentioned in the Introduction, the original

Abraham–Lorentz equation actually is a third-order lin-
ear differential equation for the position of the electron
rather than an integro-differential equation. It is possible
to write the VALEs in (33)–(36) in a similar way by con-
verting them into a special form of delay equations. This
class of differential equations has been studied extensively
for problems of radiation damping in electrodynamics and
general relativity and in mathematics [18]. Indeed, by in-
voking the first mean value theorem (this requires that
δV/δµ2

i (σ) is of one sign, which appears to be fulfilled)
to the integral in (36) one can replace the σ′-argument
of the pseudotime by some mean time 0 ≤ τi ≤ ∞. The
remaining integral then just gives a constant

Ci
2 =

∫ ∞

0
dσ (−)i δV

δµ2
i (σ)

. (39)

Therefore we have for σ ≥ 0

µ̈2
i (σ) − Ci

2

κE

[
µ2

i (σ) − 1
2
µ2

i (σ + τi) − 1
2
µ2

i (|σ − τi|)
]

= 0 . (40)

The above (seemingly linear) delay equation is exactly
equivalent to the original (non-linear) VALE because the
constant Ci

2 is in general a functional of the pseudotime
and because by construction the delay τi will also depend
on the external proper time σ as well as on µ2

i (σ). It is
worth noticing that Ci

2 also governs the asymptotic be-
havior of the profile function

Ai(E → ∞) = 1 +
Ci

2

(κEE)2
+ . . . (41)

By differentiating (36) it is seen that it also determines
the initial “jerk” [19]:

...
µ

2
i (σ → +0) =

Ci
2

κE
. (42)

For the fermionic case (or in the supersymmetric limit)
δV/δµ2

F is a total derivative (see (26)), so here one finds
the exact expression CF

2 = 3αΛ4/(2π).
In many applications of delay equations a constant de-

lay is assumed. Although this does not seem to be a valid
approximation for QED it is clear that the delay τi is
a remnant of the photon degrees of freedom which have
been integrated out and no longer appear in the equation
of motion for the mean displacement of the bare electron.
Since in QED the “force” δV/δµ2

i is very singular at small
σ one expects a very small delay τ ∼ 1/Λ2 (all integrals
are dominated by small values of σ′): the average time a
virtual photon is “in the air” is very short, but the kick
given to the bare electron is very violent.

Finally, we emphasize that in the discussion above no
use has been made of the specific form of the interaction,
i.e. the VALEs (33)–(36) hold for any dressed particle.
If we concentrate now on the specific form (21) and (22)
of the interaction in QED further simplifications can be
made. For investigations of the divergence structure of the
theory as in [13] it should be a reasonable approximation
to neglect V2 since it was shown to be less singular than
V1. Then δV/δµ2

i (σ) is just a total derivative (see (26))
and one may integrate the VALE with respect to σ. In
this supersymmetric approximation fermionic and bosonic
pseudotimes are identical and for σ ≥ 0 obey the equation

µ̇2
SUSY(σ) +

3α

4π

∫ ∞

0
dσ′ µ̇2

SUSY(σ′)

[µ̃2
SUSY(σ′)]2

e−γ̃(σ′)

× [
µ2

SUSY(σ + σ′) − µ2
SUSY(|σ − σ′|) ] = 1 . (43)

Since the regularized pseudotime just adds a constant to
the pseudotime µ2(σ), (43) also holds for µ̃2(σ). To exhibit
the UV-divergences one may even neglect the electron
mass altogether. In this “asymptotic SUSY” (ASUSY) ap-
proximation the quantity γ̃ in (43) is set to zero which al-
lows for a further integration over σ. Taking into account
the boundary condition µ2(0) = 0 one obtains the simpler
integral equation (σ ≥ 0)

σ = µ2
ASUSY(σ)

+
3α

4π

∫ ∞

0
dσ′ 1

µ̃2
ASUSY(σ′)

× [µ2
ASUSY(σ + σ′) + µ2

ASUSY(|σ − σ′|)
− 2µ2

ASUSY(σ′)
]

. (44)

Adding κE/Λ2 on both sides turns it into a compact, but
still non-linear integral equation for

y

(
s =

σΛ2

κE

)
:=

Λ2

κE
µ̃2

ASUSY(σ), (45)

namely,

y(s) = 1 + |s| − 3α

2π

∫ +∞

−∞
ds′

[
y(s + s′)

y(s′)
− 1

]
. (46)

We have been unable to find an exact analytical solution
for this scale-free equation. For the purpose of calculat-
ing the anomalous mass dimension it is, however, suffi-
cient to know the asymptotic behavior of y(s) which will
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be derived below. An approximate, third-order differential
equation (i.e. of the same type as the original Abraham–
Lorentz equation) is obtained in Appendix A.

4 Numerical results

Without any approximation the three variational equa-
tions, i.e. the fermionic and bosonic VALEs (see (33))
together with the variational equation for λ (see (24))
may be solved iteratively by stepwise numerical integra-
tion over σ. Because the profile functions AF,B have been
eliminated in favor of the pseudotimes, it is not necessary
to numerically evaluate the cosine transform (see (13))
for the pseudotime and its derivative. This simplifies the
numerical effort as compared to the published variational
treatments of super-renormalizable and finite theories [9,
10,20].

However, the presence of two vastly different scales
characterizing both the ultraviolet ( σ ∼ κE/Λ2 ) and
the infrared region ( σ ∼ κE/(λM2) with λ → 0 for
Λ → ∞, see below) makes the calculation much harder
for the present renormalizable theory. Stable numerical re-
sults have been obtained for cut-offs as large as Λ = 500 M
and coupling constants up to α = 0.5–1.0 and have been
tabulated in Table 1. The cut-off needed to be decreased
somewhat as the couplings were increased in order to re-
tain numerical stability. As in previous work (cf. [10,20]),
we have checked the accuracy of our results by comparing
the direct evaluation of the kinetic terms Ωi with those ob-
tained with the help of a virial theorem which relates the
Ωi to the potential V through the use of the variational
equations:

Ωi|var = (−)i

∫ ∞

0
dσ
[
µ2

i (σ) − σµ̇2
i (σ)

] δV

δµ2
i (σ)

. (47)

A relative accuracy of order 10−5 was achieved for not too
large cut-offs.

Fig. 1. The pseudotime divided by σ (solid line) as a function
of σ (on a logarithmic scale) for coupling constant α = 0.7
and cut-off Λ = 100 M . Bosonic and fermionic pseudotime are
indistinguishable in this plot. The dashed curve shows the dif-
ference of both

The results in the table clearly demonstrate, as antic-
ipated in Sect. 2.4, that supersymmetry is almost perfect.
This may also be seen in Fig. 1 where the pseudotimes
have been plotted for one value of α and Λ. Differences
between the bosonic and fermionic pseudotimes only show
up in the infrared region where the less-singular potential
contribution V2 dominates. This also leads to slightly dif-
ferent values of the bosonic and fermionic profile function
at E = 0. Our previous conjecture that SUSY violations
would vanish with Λ → ∞ [17] turns out to be unfounded:
in Table 1 we also give the quantity

∆S = −2
ΩB − ΩF + V1

M2
0

, (48)

which may be considered as a measure of the importance
of SUSY violations in M2

0 . One sees that for the whole
range of coupling constants which we consider they remain
at the percent-level or below and become cut-off indepen-
dent within numerical accuracy.

The ratio σµ̇2(σ)/µ2(σ) is plotted in Fig. 2 for α = 0.5
and various cut-offs. Independently of the actual magni-
tude of µ2(σ), power-like behavior of the pseudotime cor-
responds to a horizontal line on this plot. Because
µ2(σ) σ→0−→ σ and µ2(σ) σ→∞−→ σ/A(0) all curves go towards
unity for small and large σ. What is interesting, however,
is that for an increasing range of intermediate σ-values (as
Λ → ∞) the pseudotimes exhibit power-like behavior of
the form σβ , β < 1. Moreover, the value of β seems to
become independent of the cut-off as Λ increases.

This result can be understood analytically: for large
cut-offs and moderate values of σ the approximate VALEs
(43) and (44) should become valid. Inserting the ansatz

µ̃2(σ) −→ s0 · σβ (49)

Fig. 2. The effective power of σ for the bosonic pseudotime
µ2(σ) from numerical solutions of the variational Abraham–
Lorentz equation for QED. As in Fig. 1, the difference between
µ2

F (σ) and µ2
B(σ) is too small to show up on this plot. Results

for various cut-offs Λ in units of the electron mass M are shown.
The dashed horizontal line denotes the numerical value from
the analytical solution (52) at coupling constant α = 0.5
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Table 1. Some results of the numerical solution of the variational equations with form factor
regularization for different cut-offs and coupling constants. A relative accuracy of 10−6 was re-
quired at each point between subsequent iterations; in entries marked by a � only 10−5 relative
accuracy was achieved. The quantity ∆S measures the SUSY violation and is defined in (48).
The last three columns compare the numerical results with analytical approximations explained
in the text

α Λ/M λ AB(0) AF (0) M0/M 103∆S
M2

0
M2λ

β(α) λAB(0)
0.1 50 0.69862 1.4009 1.3992 0.81663 −0.36 0.95457 0.95450 0.97869

100 0.65402 1.4964 1.4946 0.79011 −0.37 0.95452 0.97866
300 0.58901 1.6615 1.6595 0.74981 −0.37 0.95451 0.97865
500 0.56102 1.7444 1.7423 0.73178 −0.37 0.95450 0.97865

1000� 0.52515 1.8636 1.8614 0.70800 −0.34 0.9545 0.97865
0.2 50 0.48548 1.9802 1.9716 0.66592 −1.31 0.91342 0.91332 0.96132

100 0.42570 2.2582 2.2484 0.62355 −1.38 0.91335 0.96129
300 0.34559 2.7815 2.7696 0.56182 −1.38 0.91333 0.96128
500� 0.31366 3.0647 3.0516 0.53522 −1.42 0.9133 0.96128

0.3 50 0.33610 2.8171 2.7923 0.54267 −2.85 0.87619 0.87610 0.94682
100 0.27631 3.4266 3.3966 0.49201 −2.88 0.87612 0.94681
300 0.20252 4.6752 4.6342 0.42122 −2.88 0.87610 0.94680
500� 0.17527 5.402 5.355 0.39184 −2.99 0.8760 0.94680

0.4 50 0.23214 4.0256 3.9682 0.44224 −4.68 0.84249 0.84241 0.93449
100 0.17914 5.2165 5.1423 0.38847 −4.71 0.84242 0.93448
300� 0.11877 7.868 7.756 0.31629 −4.78 0.8423 0.93448
500� 0.09810 9.525 9.390 0.28746 −4.81 0.8423 0.93448

0.5 50 0.16015 5.769 5.651 0.36059 −6.75 0.81191 0.81186 0.92384
100 0.11616 7.953 7.791 0.30709 −6.77 0.81187 0.92383
300� 0.06981 13.23 12.96 0.23805 −6.88 0.8118 0.92383

0.6 50 0.11046 8.828 8.056 0.29430 −8.95 0.78410 0.78406 0.91451
100 0.07541 12.127 11.800 0.24315 −8.98 0.78406 0.91450
300� 0.04117 22.21 21.61 0.17966 −9.06 0.7840 0.91450

0.7 50� 0.07623 11.890 11.485 0.24048 −11.2 0.75867 0.75869 0.90626
100� 0.04905 18.48 17.85 0.19290 −11.2 0.75867 0.90625

0.8 50� 0.05266 17.07 16.37 0.19680 −13.6 0.73540 0.73544 0.89889
100� 0.03198 28.10 26.95 0.15336 −13.6 0.73535 0.89887

0.9 50� 0.03644 24.49 23.30 0.16130 −15.9 0.7140 0.71407 0.89227
100� 0.02091 42.66 40.60 0.12219 −15.9 0.7139 0.89225

1.0 50� 0.02526 35.08 33.13 0.13244 −18.2 0.6943 0.69435 0.88627
100� 0.01372 64.61 61.01 0.09757 −18.3 0.6941 0.88622

into (44) one obtains

s0 σβ +
3α

4π

∫ ∞

0
dσ′

[(
1 +

σ

σ′
)β

+
∣∣∣1 − σ

σ′

∣∣∣β − 2
]

= σ+
κE

Λ2 . (50)

Scaling σ′ = tσ shows that the integral is proportional
to σ and therefore dominates the LHS for large values
of σ provided β < 1 which turns out to be the case for
positive couplings4. Hence, for large σ, the power β is only
a function of the coupling constant α and determined by

4 For α < 0 no power-like solutions exist anymore as the
term σβ would dominate for β > 1.

the implicit equation∫ ∞

0
dt

[(
1 +

1
t

)β

+
∣∣∣∣1 − 1

t

∣∣∣∣
β

− 2

]
=

4π
3α

. (51)

After performing the integral one obtains the following
transcendental equation for β(α):

π
2
β tan

(π
2
β
)

=
2π
3α

. (52)

Numerical solutions for a variety of α’s have been tabu-
lated in Table 1. For small coupling constants the solution
to this equation behaves like

β → 1 − 3α

2π
+
(

3α

2π

)2

+ . . . (53)
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confirming that for positive coupling constant β < 1, while
for large α it goes like β →√

8/(3πα) → 0. Figure 2 shows
that the value β(0.5) = 0.81186 (see Table 1) explains the
intermediate-range behavior of the pseudotime very well.
For very large σ the ASUSY approximation (44) becomes
invalid and the pseudotime reverts to linear behavior.

5 The anomalous mass dimension

The power-like behavior of µ2(σ) is also the key for ob-
taining the variational approximation for the anomalous
mass dimension regularized via a form factor rather than
dimensionally [13]. To do this we first note that in V the
variational parameter λ occurs exclusively in the combina-
tion λM . Let us, therefore, define the alternative dimen-
sionless variational parameter xλ = λM/Λ so that Mano’s
equation becomes

M2
0 = Λ2

[
2xλ

M

Λ
− x2

λ − 2 H(α, xλ)
]

, (54)

where H(α, xλ) is the dimensionless combination (ΩB −
ΩF + V )/Λ2. Note that, by construction, H(α, xλ) no
longer depends on M explicitly. Therefore, as it is di-
mensionless, it can also no longer depend on Λ explicitly.
The dependence on the cut-off can only enter implicitly
through the variational parameters and functions. How-
ever, the RHS of (54) is stationary with respect to vari-
ational parameters/functions, so that the dependence of
M2

0 on Λ, at fixed M , is just given by the explicit Λ de-
pendence in (54), i.e.

∂M2
0

∂Λ

∣∣∣∣∣
M fixed

= 2
M2

0

Λ
− 2M xλ . (55)

Writing M0 = ZM Mν (where ν is an arbitrary mass pa-
rameter), the anomalous mass dimension may now be eval-
uated with the help of this flow equation as

γM =
∂ log ZM

∂ log ν
= −∂ log M0

∂ log Λ

= − Λ

2M2
0

(
2
M2

0

Λ
− 2M xλ

)
=

M2

M2
0

λ − 1 . (56)

Of course, the (existence of the) limit Λ → ∞ is under-
stood in the above equations. If this limit exists then γM

must necessarily be cut-off independent so that a further
differentiation of (56) with respect to Λ gives

0 = −M2

M4
0

∂M2
0

∂Λ
λ +

M2

M2
0

∂λ

∂Λ
. (57)

Using (55) and (56) we obtain Λ ∂λ/∂Λ = −2γM λ, and
integration then shows how the parameter λ behaves for
very large cut-offs thus:

λ
Λ→∞−→ const.

(
M2

Λ2

)γM

. (58)

This behavior comes as no surprise since we know [10] that
in the worldline formalism the bare and effective mass of
the quantum mechanical particle are κE and κE/λ, respec-
tively, for which a similar relation as for the actual masses
is expected. Thus the anomalous mass dimension can be
determined either numerically by solving the variational
equations and evaluating (56) for larger and larger cut-offs
or analytically from (58) by finding the cut-off dependence
of λ.

In the following we will pursue the latter option which
is possible as we know the approximate behavior of the
pseudotime for small, intermediate and large values of σ
(here we take for simplicity κE = 1)

µ̃2(σ) �




σ +
1
Λ2 , 0 ≤ σ ≤ σ1,

s0 σβ , σ1 ≤ σ ≤ σ2,
σ

A(0)
, σ ≥ σ2 .

(59)

The regions are separated by σ1 = x1/Λ2, where the cut-
off Λ−2 becomes effective in µ̃2, and σ2 =2x2/(λ2M2A(0))
where the exponential exp(−γ̃) becomes important and
the ASUSY approximation breaks down. x1, x2 are num-
bers of order one which can be determined (together with
the normalization factors A(0) and s0) by matching the
approximate solutions at the boundaries. As we only need
the leading terms in the cut-off Λ in order to determine
γM , the actual numerical values of x1, x2 do not matter.
Matching gives s0 ∼ (Λ2)β−1 as expected from dimen-
sional arguments and

A(0) ∼
(

Λ2

λ2M2

) 1−β
2−β

. (60)

We now insert these expressions into the variational equa-
tion for λ in SUSY approximation

1
λ

= 1 +
3α

π

∫ ∞

0
dσ

1
µ̃2(σ)

(1 + γ̃ + γ̃2)e−γ̃ − 1
γ̃2 . (61)

As γ̃ only becomes large in the region σ > σ2 we are al-
lowed to expand the exponential in the intervals for small
and medium values of σ. After performing the integra-
tions, one obtains

1
λ

= 1 +
3α

π

{
1
2

ln(1 + x1) +
1

2(1 − β)

[
A(0) − x1

1 + x1

]

+ A(0) · const
}

. (62)

If A(0) would decrease with increasing Λ (or stay constant)
this equation would imply that λ would go to a constant.
This, however, is inconsistent with (60). Hence A(0) must
increase with Λ, with (62) implying that λA(0) remains
constant. This behavior is clearly seen in the numerical
results shown in the last column of Table 1. Also, in this
case the low-σ region can be neglected, which is reasonable
because otherwise the final result would depend on the
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details of the regularization. Comparing this with (58) and
(60) one sees that consistency requires that

γM =
1 − β

β
, (63)

and so (56) implies that

M2
0

M2 λ
= β . (64)

Comparison of the 8th and 9th columns in Table 1 shows
clear numerical evidence that this relation is indeed ful-
filled. Note also that (52) and (63) imply that γM is a
solution of the implicit equation

3
4
α = (1 + γM ) tan

(
π
2

γM

1 + γM

)
, (65)

in agreement with the result obtained in dimensional reg-
ularization [13]. The convergence of the perturbative ex-
pansion and the analytic properties of the solutions of
such transcendental equations have been studied in [21].
The present derivation adds the insight that for α < 0 no
power-like solution of the VALE (44) exists and therefore
(52) is not applicable anymore. Obviously, this peculiar
behavior when changing the sign of the coupling constant
is not contained in (65) but in agreement with Dyson’s old
qualitative argument [22] that α = 0 is an essential singu-
larity in QED. We also note that the Dyson–Schwinger cal-
culations with a particular ansatz for the electron–photon
vertex lead to a similar implicit equation [23], but a gauge
dependence remains and solutions exist only below a crit-
ical coupling.

6 Conclusions and outlook

In summary, we have shown that the variational formula-
tion of worldline QED very naturally leads to an equation
which is similar to the one considered much earlier by
Abraham, Lorentz and Dirac in attempts to describe the
electron and its self-interaction with the radiation field.
In contrast to these attempts our approach contains (al-
most) all the ingredients of the relativistic field theory of
electrons and photons, in particular its divergence struc-
ture. This has been demonstrated by numerically solving
the variational Abraham–Lorentz equation (VALE) for a
variety of cut-offs and by deriving an approximate non-
perturbative expression for the anomalous mass dimension
of the electron. We have shown how the approach leads
naturally to a qualitatively different behavior of the the-
ory for α > 0 and α < 0. Furthermore, while the present
investigation has been restricted to a free electron inter-
acting with its own radiation field, the extension to the
case when an external field is present as well should be
straightforward. This would allow for a study of how this
field-theoretically based worldline variational approach to
QED avoids the pitfalls of pre-acceleration and acausality
which have plagued all classical attempts.

However, for further progress we deem it more impor-
tant to first study the issue of supersymmetry (breaking)
within the worldline variational approach in more detail.
For massive electrons small violations of worldline super-
symmetry have been observed which are “soft” in the
sense that the ultraviolet behavior of the theory is not
affected. These violations presumably reflect the SUSY-
breaking generated by the different boundary conditions
for bosonic and fermionic variables in the exact action.
Further investigation is required into what role, if any,
this SUSY-breaking plays in the full spin structure of the
electron propagator and how it is manifested in the world-
line variational approximation. Such an understanding is
required for future applications of this non-perturbative
approach to physical processes. Finally it is not inconceiv-
able that similar VALE’s as derived here in the variational
approach for the propagator will also emerge for the full
interacting vertex.

Appendix

A Approximate third-order differential VALE

Here we show how a third-order differential equation for
the mean square displacement arises approximately in
QED. For this purpose we invert (13) to obtain

1
Ai(E)

= 1 +
∫ ∞

0
dσ µ̈2

i (σ) cos(Eσ) (A.1)

and observe that for small coupling the profile function
stays close to unity. Therefore one has in this case

Ωi =
2κE

π

∫ ∞

0
dE

[
− log

(
1 +

1
Ai(E)

− 1
)

+
1

Ai(E)
− 1
]

=
κE

π

∫ ∞

0
dE

{[
1 − 1

Ai(E)

]2
+ O

(
1 − 1

Ai(E)

)3
}

� κE

2

∫ ∞

0
dσ
[
µ̈2

i (σ)
]2

. (A.2)

Variation first gives a fourth-order ordinary differential
equation

(−)i κE
d4

dσ4 µ2
i (σ) +

δV

δµ2
i (σ)

� 0 , (A.3)

but in the supersymmetric limit of QED the functional
derivative of the “potential” V is a total derivative (see
(26)) so that an integration yields

...
µ

2
(σ) � 3α

2π
µ̇2(σ)
µ̃4(σ)

e−γ̃(σ) . (A.4)

This third-order differential equation clearly is specific for
QED and therefore it is tempting to interpret the “kinetic”
term Ω in this case as total (integrated) “radiative energy
loss”. Indeed, it is positive and in the approximate form
(A.2) the integrand has precisely the form of the Larmor
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power formula (see, e.g. (17.6) in [2]). Without external
force there should be, of course, no real radiation loss – in
fact, for exact supersymmetry ΩB is completely cancelled
by ΩF . Of course, the fourth-order equation also applies
(approximately) to other theories where this interpreta-
tion does not make sense.

Since we have assumed µ̈2 as small in (A.1) the present
approximation should be similar to a derivative expansion.
Indeed, if in the integrand of the VALE (43),

µ2 (σ + σ′) − µ2 (|σ − σ′|)
=µ2 (σ>+ σ<) − µ2 (σ>− σ<)
� µ̇2 (σ>) σ<, (A.5)

is expanded to first order and the resulting equation di-
vided by σ one obtains

µ̇2(σ)
σ

[
1 +

3α

2π

∫ σ

0
dσ′ σ′ µ̇

2(σ′)
µ̃4(σ′)

e−γ̃(σ′)
]

+
3α

2π

∫ ∞

σ

dσ′ µ̇4(σ′)
µ̃4(σ′)

e−γ̃(σ′) � 1
σ

. (A.6)

This can be converted to a differential equation by dif-
ferentiating with respect to σ and replacing the square
bracket by 1/(µ̇2−σµ̈2). Another differentiation then gives

...
µ

2
(σ) � 3α

2π
[ µ̇2(σ) − σµ̈2(σ) ]2

µ̇2(σ)
µ̃4(σ)

e−γ̃(σ) (A.7)

which is identical with the third-order equation (A.4) if
the factor in square brackets is replaced by its perturbative
value 1. The boundary conditions are µ2(0) = 0 , µ̇2(0) =
1 and a peculiar value of the second derivative at the origin

µ̈2(0) =
1
κE

∫ ∞

0
dσ µ2

F (σ)
δV

δµ2
F (σ)

∣∣∣∣∣
SUSY

= −3α

2π

∫ ∞

0
dσ

(
µ̇2(σ)
µ̃2(σ)

)2

e−γ̃(σ) (A.8)

expressed as functional of the still unknown solution. This
follows from (36) in the limit σ → 0, together with (26)
and can be considered as a reminder that the non-local
actions we are working with originate from local actions
with the photonic degrees of freedom integrated out. In
this way Ostrogradski’s no-go theorem for higher deriva-
tive and non-local theories [24] is evaded.

It is interesting that the (approximate) equation (A.7)
also allows for power-like solutions in the massless case
whereas the perturbative version (A.4) does not. Indeed,
inserting the ansatz (49) into (A.7) shows that the powers
on both sides of the equation match and this leads to the
cubic equation

β − 1 � 3α

2π
β2(β − 2) . (A.9)

This gives the correct limit (53) for α → 0 and the same
1/

√
α-behavior for large α as the exact result (52) only

with a coefficient π/
√

8 = 1.11 times larger. That the

derivative expansion works rather well also at interme-
diate coupling constants is demonstrated, for example, by
the numerical value β(0.5) � 0.81277 obtained from (A.9)
to be compared with the correct β(0.5) = 0.81186.
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